RAINBOW GLARE

INVESTIGATION OF THE RAINBOW GLARE EFFECT AFTER FS-LASIK

MIKAEL GUEDJ ZACARIA ESSAIDI DAMIEN GATINEL KARSTEN PLAMANN

www.mguedj.com

IN RAINBOWS

IN RAINBOWS

IN RAINBOWS

PLANE WAVEFRONTS

HUYGENS-FRESNEL POSTULATE

PLANE WAVEFRONTS

DIFFRACTION GRATING

PRODUCTION OF DISCRETE MAXIMA AT SPECIFIC ANGLES

PLANE WAVEFRONTS

GRATING EQUATION:

GRATING EQUATION:

MONOCHROMATIC LIGHT

GRATING EQUATION:

MONOCHROMATIC LIGHT

GRATING EQUATION:

MONOCHROMATIC LIGHT

GRATING EQUATION:

WHITE LIGHT

GRATING EQUATION:

LENS WHITE LIGHT

WHAT WAS KNOWN (STATE OF THE ART)

1

Krueger R - Ophthalmology 2008

Rainbow glare as an optical side effect of IntraLASIK

+ <u>DRAWING</u>
OF THE PERIPHERAL SPECTRAL PATTERN!

paper @ 55 cm
around a point white light source

ORIENTATION
AND VISUAL
ANGLE OF
BLUE
YELLOW
RED

+ <u>DRAWING</u>
OF THE PERIPHERAL SPECTRAL PATTERN!

Figure 3. Simple illustration offered by an early patient reporting symptoms of rainbow glare. Twelve faint red spots are seen around a red traffic light, but 12 bands of color are seen around a white light source at night.

+ <u>DRAWING</u>
OF THE PERIPHERAL SPECTRAL PATTERN!

Figure 3. Simple illustration offered by an early patient reporting symptoms of rainbow glare. Twelve faint red spots are seen around a red traffic light, but 12 bands of color are seen around a white light source at night.

+ <u>DRAWING</u>
OF THE PERIPHERAL SPECTRAL PATTERN!

Figure 3. Simple illustration offered by an early patient reporting symptoms of rainbow glare. Twelve faint red spots are seen around a red traffic light, but 12 bands of color are seen around a white light source at night.

Krueger R - Ophthalmology 2008

Rainbow glare as an optical side effect of IntraLASIK

Krueger R - Ophthalmology 2008

Rainbow glare as an optical side effect of IntraLASIK

31.6%

HALOS, GLARE, STARBURST

32.1%

Bamba - Journal of Cataract & Refractive Surgery 2009
Incidence of rainbow glare after LASIK flap creation with a 60 kHz fs laser.

LASER IN SITU KERATOMILEUSIS (LASIK) TECHNIQUE

FEMTOSECOND LASER

PHOTOABLATION

 \simeq 9.5 μ m

FS IMPACTS A DIFFRACTION GRATING

2

AIMS AND QUESTIONS

Can we minimize rainbow glare by randomising the FS-impact pattern?

Ackermann R - Biomedical Optics Express 2012 Optical side-effects of fs-laser treatment in refractive surgery investigated by means of a model eye

REGULAR 10 μm spacing

RANDOM

Ackermann R - Biomedical Optics Express 2012 Optical side-effects of fs-laser treatment in refractive surgery investigated by means of a model eye

Fig. 3. Number of pixels, for which the intensity of the RGB-channel to be analyzed is 25% higher than the other two channels; the ordinate shows their mean intensity value. Colors indicate the corresponding RGB-channel. For the lens with laser spots at random positions, the number of pixels is exactly zero.

Ackermann R - Biomedical Optics Express 2012 Optical side-effects of fs-laser treatment in refractive surgery investigated by means of a model eye

- ⇒ RG = dominant optical side effect in fs-refractive surgery.
- \Rightarrow For <u>corneal treatments</u>, it can be avoided by spot-to-spot distances of ~3 µm.
- ⇒ For fs-laser treatment of the <u>crystalline lens</u>, rainbow glare may nearly entirely be suppressed by a random distribution of the laser spots within the lens.

METHODS

Quantification

Linear grating

✓ Pulses overlapping $(\sim 67\%)$

Distance between pulses:

$$\mathbf{d_2} = \frac{\Delta}{Fr \times T_x}$$

 $\mathbf{d_2} = \frac{\Delta}{Fr \times T_x}$ Δ : line length (1cm) Fr: laser rep. rate (10kHz)

Tx: time per line (1s)

Spot size: $\mathbf{d_1} = \frac{1.22\lambda}{N.A.}$

Values:

 $d_1: 2,79 \mu m$

d₂: 1μm

D: variable (1,3,5,7,10,15 μm)

Femtosecond laser

Repetition rate

Pulse duration

Wavelength

10 kHz

780 fs

1030 nm

Glass slides & incisions

Glass thickness	1.2 mm
Incision type	lamellar
Incision depth	200 μm
Incision shape	square 1 cm x 1 cm
Line spacing width	1, 3, 5, 7, 10 and 15 μm
Random / line	randomized per line
Random / full	fully randomized

GLASS SAMPLES

MACROSCOPE IMAGES 1 µm

MACROSCOPE IMAGES 3 µm

MACROSCOPE IMAGES 5 µm

MACROSCOPE IMAGES 7 µm

COURTESY OF Z. ESSAIDI

MACROSCOPE IMAGES 10 μm

MACROSCOPE IMAGES 15 µm

MACROSCOPE IMAGES 15 µm

PERIPHERAL VIBRATIONS

REGULAR LINES

Krueger R - Ophthalmology 2008

A $\sin \theta = m \lambda$

A = grating constant, depicting the space between 2 spots and between 2 lines d = color distance from the light source

 θ = visual angle of a perceived color (sin θ \simeq tan θ = d/L for small angles)

m = diffraction order (for the fundamental order, <math>m = 1)

 λ = wavelength for a given color

METHODS

2. HUMAN CORNEAS

METHODS

CAMERA

GLASS SLIDE IMPACTED BY FS LASER

SOURCE

DIASCOPIC ILLUMINATION

PRELIMINARY RESULTS

3 µm

RANDOM

CONCLUSIONS & PERSPECTIVES

- ① Concentration of diffracted light in periodic orders is reduced by randomisation of the FS impacts.
- ② Spot-to-spot distance of $\approx 3 \mu m$ on glass slides ? (Ackermann, BOE 2012)

Rainbow glare not avoided by line spacing $< 10 \,\mu$

③ However, light scattering not assessed here⇒ possible source of discomfort.

ACKNOWLEDGEMENTS

